Operating Instructions Flow monitor Type BFS-10 N / N-Air and Flow monitor Type BFS-10 O / O-Air

1. Installation

Operating of the BFS-10 N flow monitors is based on the movement of a spring-loaded piston within a cylindrical tube. The instrument can be mounted in any position in a system. Flow direction is from the lowest to the highest value, indicated on the scale.

The flow media must be free of particle contamination, otherwise the instruments will not function properly. Also magnetic particles may cause faults. We recommend the use of dirt filters or magnetic filters. All non standard applications should be discussed with our technical engineers.

The flow monitors must not be positioned in inductive or magnetic fields. Minimum distance from iron parts: 10 mm .

All connection sizes comply with the R-standard (DIN 2999, part 1). Only suitable thread and sealing material should be used for installation, otherwise the correct function of the equipment may be affected.

To avoid the risk of measure faults, the upstream line should be $10 \times \mathrm{D}$ and the downstream line $5 \times \mathrm{D}$ (where $\mathrm{D}=$ internal diameter of the tube).

The highest accuracy will be reached by mounting the flow monitors vertically, with flow directon from bottom to the top.

When screwing the fittings, take care of the max. leigh of the threads. Too long threads may cause damage of the flow monitor.

(BFS-10-O:

When screwing the fittings, the flowmeter threads must be fixed with a spanner. Never rotate the flowmeter connections inside the aluminum sleeve. This may cause leakage or breaking of the glass.)

All model provided with a switch should be protected from electrical overload. Never exceed the given maximum switch capacity, not even for short periods. The embedded reedswitch is very sensitive for specifically inductive loads, which may occur at closing or opening and which can up to 10 times the given nominal value of the coil. Use protecting relays or other precautians in such cases

Our reedswitches are gold-rhodium-plated, which allow direct connecting to SPS-systems.

2. Standard wiring diagram for switches, provided with connector:

3. Adjusting the switching points

The switchpoint should be adjusted on the scale of the flowswitch. Please notice that he switch point is always the shutdown point. That means, the contact will open when the flow rate is decreasing to the adjusted switchpoint. So the NO opens in case of an alarm.

4. Maintenance

The flowmeters are free of maintenance because of the few mechanical parts. For security reason we advice to check the flowmeters from time to time.

5. Switch versions for hazardous locations

As option there is an intrinsically safe approved version for G and D environments according to ATEX regulations. These switches, marked with EEx ia label, must be operated with a certified switch amplifier according to the applicable regulations.
Design conditions, approval data and instructions must be observed carefully. Installation and operation must be performed by trained personnel only.

Approval data:
Approved for:II 1 GD EEx ia IIB T6, IP6X, T $100^{\circ} \mathrm{C}$ Certificate-No.: ISSeP03ATEX119X
Electrical data for intrinsically safe application:
$\mathrm{U}_{\mathrm{i}}=28 \mathrm{~V}$
$\mathrm{I}_{\mathrm{i}}=50 \mathrm{~mA}$
$C_{i}=40 \mathrm{pF}$
$\mathrm{L}_{\mathrm{i}}=4 \mu \mathrm{H}$

Barksdale

CONTROL PRODUCTS

Barksdale GmbH

Dorn-Assenheimer Strasse 27
D-61203 Reichelsheim / Germany
Tel.: +49-60 35-9 49-0
Fax: +49-60 35-9 49-111 and 9 49-113
e-mail: info @ barksdale.de
www.barksdale.de

6. Technical data:

Operating data	BFS-10-N 1"	BFS-10-N 1/2"	BFS-10-N 1/4*
Pressure MS	PN 250 bar	PN 300 bar	PN 300 bar
Pressure VA	300 bar	350 bar	350 bar
Pressure drop	0,02-0,4 bar	0,02-0,3 bar	0,02-0,2 bar
Temperature max.	$100{ }^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$
Electrical data*			
Normally open	250V-3 A - 100 VA	230V-3 A - 60 VA	200V-1 A - 20 VA
Change over**	$250 \mathrm{~V}-1,5 \mathrm{~A}-50 \mathrm{VA}$	$250 \mathrm{~V}-1,5 \mathrm{~A}-50 \mathrm{VA}$	200 V - 1 A -20 VA
Protection	IP65	IP65	IP65
Materials	brass 1.4571	brass 1.4571	brass 1.4571
Housing	brass 1.4571	brass 1.4571	brass 1.4571
Float	brass 1.4571	brass 1.4571	brass 1.4571
Spring	$1.4571 \quad 1.4571$	$1.4571 \quad 1.4571$	$1.4571 \quad 1.4571$
Seals	none none	none none	none none
Accuracy	$\pm 10 \%$ of FS	$\pm 10 \%$ of FS	$\pm 10 \%$ of FS

Electrical connection acc. to DIN 43650 or with 1 m cable

Operating data	BFS-10-0 1"	BFS-10-0 1/2"	BFS-10-0 1/4"
Pressure MS	PN 10 bar	PN 16 bar	PN 16 bar
Pressure VA	300 bar	350 bar	350 bar
Pressure drop	0,02-0,4 bar	0,02-0,3 bar	0,02-0,2 bar
Temperature max.	$120{ }^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$
Electrical data*			
Normally open	250 V - 3 A - 100 VA	230 V - 1 A - 100 VA	200V-1 A - 20 VA
Change over**	$250 \mathrm{~V}-1,5 \mathrm{~A}-50 \mathrm{VA}$	$250 \mathrm{~V}-1,5 \mathrm{~A}-50 \mathrm{VA}$	200V-1 A - 20 VA
Protection	IP65	IP65	IP65
Materials	brass 1.4571	brass 1.4571	brass 1.4571
Housing	Aluminum anodized	Aluminum anodized	Aluminum anodized
Float	brass 1.4571	brass 1.4571	brass 1.4571
Spring	$1.4310 \quad 1.4571$	$1.4310 \quad 1.4571$	$1.4310 \quad 1.4571$
Seals	Perbunan, Viton or EPDM		
Glass	Duran 50 Duran 50	Duran 50 Duran 50	Duran 50 Duran 50
Accuracy	$\pm 10 \%$ of FS	$\pm 10 \%$ of FS	$\pm 10 \%$ of FS

Electrical connection acc. to DIN 43650 or with 1 m cable

* Data only for application in non explosive atmosphere
** Minimum load: 3 VA
Contact rating for SPS-applications: 200 V, 1 A, 20 VA (Please request)

Dimensions (in mm)

